Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
biorxiv; 2023.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2023.08.31.555625

RESUMEN

COVID-19 remains a significant public health threat due to the ability of SARS-CoV-2 variants to evade the immune system and cause breakthrough infections. Although pathogenic coronaviruses such as SARS-CoV-2 and MERS-CoV lead to severe respiratory infections, how these viruses affect the chromatin proteomic composition upon infection remains largely uncharacterized. Here we used our recently developed integrative DNA And Protein Tagging (iDAPT) methodology to identify changes in host chromatin accessibility states and chromatin proteomic composition upon infection with pathogenic coronaviruses. SARS-CoV-2 infection induces TP53 stabilization on chromatin, which contributes to its host cytopathic effect. We mapped this TP53 stabilization to the SARS-CoV-2 spike and its propensity to form syncytia, a consequence of cell-cell fusion. Differences in SARS-CoV-2 spike variant-induced syncytia formation modify chromatin accessibility, cellular senescence, and inflammatory cytokine release via TP53. Our findings suggest that differences in syncytia formation alter senescence-associated inflammation, which varies among SARS-CoV-2 variants.


Asunto(s)
Dolor Irruptivo , Infecciones del Sistema Respiratorio , COVID-19 , Inflamación
2.
biorxiv; 2022.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2022.09.13.507833

RESUMEN

Identifying host genes essential for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has the potential to reveal novel drug targets and further our understanding of coronavirus disease 2019 (COVID-19). We previously performed a genome-wide CRISPR/Cas9 screen to identify pro-viral host factors for highly pathogenic human coronaviruses. Very few host factors were required by diverse coronaviruses across multiple cell types, but DYRK1A was one such exception. Although its role in coronavirus infection was completely unknown, DYRK1A encodes Dual Specificity Tyrosine Phosphorylation Regulated Kinase 1A and regulates cell proliferation, and neuronal development, among other cellular processes. Interestingly, individuals with Down syndrome overexpress DYRK1A 1.5-fold and exhibit 5-10x higher hospitalization and mortality rates from COVID-19 infection. Here, we demonstrate that DYRK1A regulates ACE2 and DPP4 transcription independent of its catalytic kinase function to support SARS-CoV, SARS-CoV-2, and MERS-CoV entry. We show that DYRK1A promotes DNA accessibility at the ACE2 promoter and a putative distal enhancer, facilitating transcription and gene expression. Finally, we validate that the pro-viral activity of DYRK1A is conserved across species using cells of monkey and human origin and an in vivo mouse model. In summary, we report that DYRK1A is a novel regulator of ACE2 and DPP4 expression that may dictate susceptibility to multiple highly pathogenic human coronaviruses. Whether DYRK1A overexpression contributes to heightened COVID-19 severity in individuals with Down syndrome through ACE2 regulation warrants further future investigation.


Asunto(s)
Infecciones por Coronavirus , Síndrome Respiratorio Agudo Grave , COVID-19
3.
biorxiv; 2021.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2021.06.10.447982

RESUMEN

T follicular helper (Tfh) cells are the conventional drivers of protective, germinal center (GC)-based antiviral antibody responses. However, loss of Tfh cells and GCs has been observed in patients with severe COVID-19. As T cell-B cell interactions and immunoglobulin class switching still occur in these patients, non-canonical pathways of antibody production may be operative during SARS-CoV-2 infection. We found that both Tfh-dependent and -independent antibodies were induced against SARS-CoV-2 as well as influenza A virus. Tfh-independent responses were mediated by a population we call lymph node (LN)-Th1 cells, which remain in the LN and interact with B cells outside of GCs to promote high-affinity but broad-spectrum antibodies. Strikingly, antibodies generated in the presence and absence of Tfh cells displayed similar neutralization potency against homologous SARS-CoV-2 as well as the B.1.351 variant of concern. These data support a new paradigm for the induction of B cell responses during viral infection that enables effective, neutralizing antibody production to complement traditional GCs and even compensate for GCs damaged by viral inflammation.


Asunto(s)
COVID-19 , Virosis , Inflamación
4.
biorxiv; 2020.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2020.10.06.327445

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of a pandemic with growing global mortality. There is an urgent need to understand the molecular pathways required for host infection and anti-viral immunity. Using comprehensive identification of RNA-binding proteins by mass spectrometry (ChIRP-MS), we identified 309 host proteins that bind the SARS-CoV-2 RNA during active infection. Integration of this data with viral ChIRP-MS data from three other positive-sense RNA viruses defined pan-viral and SARS-CoV-2-specific host interactions. Functional interrogation of these factors with a genome-wide CRISPR screen revealed that the vast majority of viral RNA-binding proteins protect the host from virus-induced cell death, and we identified known and novel anti-viral proteins that regulate SARS-CoV-2 pathogenicity. Finally, our RNA-centric approach demonstrated a physical connection between SARS-CoV-2 RNA and host mitochondria, which we validated with functional and electron microscopy data, providing new insights into a more general virus-specific protein logic for mitochondrial interactions. Altogether, these data provide a comprehensive catalogue of SARS-CoV-2 RNA-host protein interactions, which may inform future studies to understand the mechanisms of viral pathogenesis, as well as nominate host pathways that could be targeted for therapeutic benefit.


Asunto(s)
Enfermedad Injerto contra Huésped
5.
biorxiv; 2020.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2020.10.06.328112

RESUMEN

The SARS-CoV-2 nucleocapsid (N) protein is the most immunogenic of the structural proteins and plays essential roles in several stages of the virus lifecycle. It is comprised of two major structural domains: the RNA binding domain, which interacts with viral and host RNA, and the oligomerization domain which assembles to form the viral core. Here, we investigate the assembly state and RNA binding properties of the full-length nucleocapsid protein using native mass spectrometry. We find that dimers, and not monomers, of full-length N protein bind RNA, implying that dimers are the functional unit of ribonucleoprotein assembly. In addition, we find that N protein binds RNA with a preference for GGG motifs which are known to form short stem loop structures. Unexpectedly, we found that N undergoes autoproteolytic processing within the linker region, separating the two major domains. This process results in the formation of at least five proteoforms that we sequenced using electron transfer dissociation, higher-energy collision induced dissociation and corroborated by peptide mapping. The cleavage sites identified are in highly conserved regions leading us to consider the potential roles of the resulting proteoforms. We found that monomers of N-terminal proteoforms bind RNA with the same preference for GGG motifs and that the oligomeric state of a C-terminal proteoform (N156-419) is sensitive to pH. We used mass spectrometry to show that N binds to a monoclonal antibody raised against full-length N. No antibody interactions were detected for N proteoforms without C-terminal residues, therefore locating antigenic regions towards the C-terminus. We then tested interactions of the proteoforms with the immunophilin cyclophilin A, a key component in coronavirus replication. We found that N1-209 and N1-273 bind directly to cyclophilin A, an interaction that is abolished by the approved immunosuppressant drug cyclosporin A. We propose that the proteoforms generated via autoproteolysis evade antibody detection through removal of the antigenic C-terminus and facilitate interactions with structured RNA or cyclophilin thereby enabling the virus to proliferate.

6.
biorxiv; 2020.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2020.09.24.312769

RESUMEN

Identifying drugs that regulate severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and its symptoms has been a pressing area of investigation during the coronavirus disease 2019 (COVID-19) pandemic. Nonsteroidal anti-inflammatory drugs (NSAIDs), which are frequently used for the relief of pain and inflammation, could modulate both SARS-CoV-2 infection and the host response to the virus. NSAIDs inhibit the enzymes cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2), which mediate the production of prostaglandins (PGs). PGE2, one of the most abundant PGs, has diverse biological roles in homeostasis and inflammatory responses. Previous studies have shown that NSAID treatment or inhibition of PGE2 receptor signaling leads to upregulation of angiotensin-converting enzyme 2 (ACE2), the cell entry receptor for SARS-CoV-2, thus raising concerns that NSAIDs could increase susceptibility to infection. COX/PGE2 signaling has also been shown to regulate the replication of many viruses, but it is not yet known whether it plays a role in SARS-CoV-2 replication. The purpose of this study was to dissect the effect of NSAIDs on COVID-19 in terms of SARS-CoV-2 entry and replication. We found that SARS-CoV-2 infection induced COX-2 upregulation in diverse human cell culture and mouse systems. However, suppression of COX-2/PGE2 signaling by two commonly used NSAIDs, ibuprofen and meloxicam, had no effect on ACE2 expression, viral entry, or viral replication. Our findings suggest that COX-2 signaling driven by SARS-CoV-2 may instead play a role in regulating the lung inflammation and injury observed in COVID-19 patients.


Asunto(s)
Infecciones por Coronavirus , Dolor , Síndrome Respiratorio Agudo Grave , Neumonía , COVID-19 , Inflamación
7.
biorxiv; 2020.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2020.06.25.169946

RESUMEN

Although COVID-19 is considered to be primarily a respiratory disease, SARS-CoV-2 affects multiple organ systems including the central nervous system (CNS). Reports indicate that 30-60% of patients with COVID-19 suffer from CNS symptoms. Yet, there is no consensus whether the virus can infect the brain, or what the consequences of infection are. Following SARS-CoV-2 infection of human brain organoids, clear evidence of infection was observed, with accompanying metabolic changes in the infected and neighboring neurons. Further, no evidence for the type I interferon responses was detected. We demonstrate that neuronal infection can be prevented either by blocking ACE2 with antibodies or by administering cerebrospinal fluid from a COVID-19 patient. Finally, using mice overexpressing human ACE2, we demonstrate in vivo that SARS-CoV-2 neuroinvasion, but not respiratory infection, is associated with mortality. These results provide evidence for the neuroinvasive capacity of SARS-CoV2, and an unexpected consequence of direct infection of neurons by SARS-CoV2.


Asunto(s)
Enfermedades Respiratorias , Síndrome Respiratorio Agudo Grave , Infecciones del Sistema Respiratorio , Degeneración Nerviosa , COVID-19
8.
ssrn; 2020.
Preprint en Inglés | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3628297

RESUMEN

Severe Acute Respiratory Syndrome- Coronavirus 2 (SARS-Cov-2) has caused over 5,000,000 cases of Coronavirus disease (COVID-19) with significant fatality rate. Due to the urgency of this global pandemic, numerous therapeutic and vaccine trials have begun without customary safety and efficacy studies. Laboratory mice have been the stalwart of these types of studies; however, they do not support infection by SARS-CoV-2 due to the inability of its spike (S) protein to engage the mouse ortholog of its human entry receptor angiotensin-converting enzyme 2 (hACE2). While hACE2 transgenic mice support infection and pathogenesis, these mice are currently limited in availability and are restricted to a single genetic background. Here we report the development of a mouse model of SARS-CoV-2 based on adeno associated virus (AAV)-mediated expression of hACE2. These mice support viral replication and antibody production and exhibit pathologic findings found in COVID-19 patients as well as non-human primate models. Moreover, we show that type I interferons are unable to control SARS-CoV2 replication and drive pathologic responses. Thus, the hACE2-AAV mouse model enables rapid deployment for in-depth analysis following robust SARS-CoV-2 infection with authentic patient-derived virus in mice of diverse genetic backgrounds. This represents a much-needed platform for rapidly testing prophylactic and therapeutic strategies to combat COVID-19.Funding: This study was supported by awards from National Institute of Health grants, 2T32AI007517-16 (to BI), T32GM007205 and F30CA239444 (to ES), AI054359 and AI127429 (to AI), T32AI007019 (to TM),K08 AI128043 (to CBW), as well as Women’s Health Research at Yale Pilot Project Program (AI, AR), Fast Grant from Emergent Ventures at the Mercatus Center (AI, ES), Mathers Foundation (AR, CBW, AI), and the Ludwig Family Foundation (AI, AR, CBW). A.I. is an investigator of the Howard Hughes Medical Institute. Conflict of Interest: None of the authors declare interests related to the manuscript.Ethical Approval: All procedures were performed in a BSL-3 facility (for SARS-CoV-2 infected mice) with approval from the Yale Environmental Health and Safety office.


Asunto(s)
Infecciones por Coronavirus , Síndrome Respiratorio Agudo Grave , COVID-19
9.
biorxiv; 2020.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2020.05.27.118893

RESUMEN

Severe Acute Respiratory Syndrome-Coronavirus 2 (SARS-Cov-2) has caused over 5,000,000 cases of Coronavirus disease (COVID-19) with significant fatality rate.1-3 Due to the urgency of this global pandemic, numerous therapeutic and vaccine trials have begun without customary safety and efficacy studies.4 Laboratory mice have been the stalwart of these types of studies; however, they do not support infection by SARS-CoV-2 due to the inability of its spike (S) protein to engage the mouse ortholog of its human entry receptor angiotensin-converting enzyme 2 (hACE2). While hACE2 transgenic mice support infection and pathogenesis,5 these mice are currently limited in availability and are restricted to a single genetic background. Here we report the development of a mouse model of SARS-CoV-2 based on adeno associated virus (AAV)-mediated expression of hACE2. These mice support viral replication and antibody production and exhibit pathologic findings found in COVID-19 patients as well as non-human primate models. Moreover, we show that type I interferons are unable to control SARS-CoV2 replication and drive pathologic responses. Thus, the hACE2-AAV mouse model enables rapid deployment for in-depth analysis following robust SARS-CoV-2 infection with authentic patient-derived virus in mice of diverse genetic backgrounds. This represents a much-needed platform for rapidly testing prophylactic and therapeutic strategies to combat COVID-19.


Asunto(s)
Infecciones por Coronavirus , COVID-19
10.
biorxiv; 2020.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2020.05.06.081695

RESUMEN

SARS-CoV-2, the causative agent of COVID-19, has tragically burdened individuals and institutions around the world. There are currently no approved drugs or vaccines for the treatment or prevention of COVID-19. Enhanced understanding of SARS-CoV-2 infection and pathogenesis is critical for the development of therapeutics. To reveal insight into viral replication, cell tropism, and host-viral interactions of SARS-CoV-2 we performed single-cell RNA sequencing of experimentally infected human bronchial epithelial cells (HBECs) in air-liquid interface cultures over a time-course. This revealed novel polyadenylated viral transcripts and highlighted ciliated cells as a major target of infection, which we confirmed by electron microscopy. Over the course of infection, cell tropism of SARS-CoV-2 expands to other epithelial cell types including basal and club cells. Infection induces cell-intrinsic expression of type I and type III IFNs and IL6 but not IL1. This results in expression of interferon-stimulated genes in both infected and bystander cells. We observe similar gene expression changes from a COVID-19 patient ex vivo. In addition, we developed a new computational method termed CONditional DENSity Embedding (CONDENSE) to characterize and compare temporal gene dynamics in response to infection, which revealed genes relating to endothelin, angiogenesis, interferon, and inflammation-causing signaling pathways. In this study, we conducted an in-depth analysis of SARS-CoV-2 infection in HBECs and a COVID-19 patient and revealed genes, cell types, and cell state changes associated with infection.


Asunto(s)
COVID-19 , Inflamación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA